Ltn and The Switch are two of the leading providers of live video transmission and broadcasting solutions, but there are also other competitors in this market. Here is a brief comparison of Ltn, The Switch, and other competitors in this space:
1. Ltn – Ltn offers a range of cloud-based video transport and managed network solutions for broadcast and live events. Ltn’s solutions support up to 4K resolution, and offer features such as low-latency transmission, bonding of multiple cellular networks, and support for a range of video formats. Ltn’s pricing model is subscription-based, with customized pricing plans based on the specific needs of the customer. Ltn also offers 24/7 support and a global network of data centers.
2. The Switch – The Switch offers a range of video transport and production solutions for broadcast and live events, including fiber-optic networks, satellite trucks, and remote production services. The Switch’s solutions support up to 4K resolution, and offer features such as low-latency transmission, bonding of multiple cellular networks, and support for a range of video formats. The Switch’s pricing model is based on usage and location, with customized pricing plans based on the specific needs of the customer. The Switch also offers 24/7 support and a global network of data centers.
3. Haivision offers a range of video transport and production solutions for broadcast and live events, including cloud-based video streaming, low-latency encoding, and remote production services.
4. AWS Elemental offers a range of cloud-based video processing and delivery solutions for broadcast and live events, including live streaming, video encoding, and content delivery.
5. Grabyo offers a cloud-based platform for live video production and distribution, with features such as live clipping, real-time graphics, and social media integration.
The choice between these companies will depend on the specific needs and requirements of the organization, as well as factors such as pricing, support, and integration with other systems. It is recommended to evaluate the features, capabilities, and pricing of each provider before making a decision.
Tag: Mentoring
An SFP (Small Form-factor Pluggable) is a hot-swappable transceiver that allows for flexible optical or copper connectivity in various applications such as A/V, theatre, and TV production. It is commonly used for transmitting high-speed data via fiber optic cables.
There are many companies that offer SFPs, including Cisco, Juniper Networks, HP, Dell, and many more (see below). The features and specs of an SFP will vary depending on the manufacturer and the specific model. However, some common features of SFPs include data rates of up to 10 Gbps, support for various protocols such as Ethernet, Fibre Channel, and SONET/SDH, and compatibility with various types of fiber optic cables.
Additionally, SFPs may come in different form factors such as LC, SC or ST connectors, and can support either single-mode or multi-mode fibers. Some SFPs may also support extended temperature ranges for use in harsh environments. It’s important to note that the specific features and specs of an SFP will depend on the application and the specific requirements of the user.
Companies that offer SFPs and their features and specs:
1. Cisco – Cisco offers a range of SFP modules for their switches and routers. Cisco’s SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
2. Juniper Networks – Juniper Networks offers SFPs for their switches and routers. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
3. HP Enterprise – HP Enterprise offers SFPs for their switches and routers. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
4. Netgear – Netgear offers SFPs for their switches and routers. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
5. Dell EMC – Dell EMC offers SFPs for their switches and routers. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
6. Allied Telesis – Allied Telesis offers SFPs for their switches and routers. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
7. Black Box – Black Box offers SFPs for their switches and routers. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
8. Brocade – Brocade offers SFPs for their switches and routers. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
9. Extreme Networks – Extreme Networks offers SFPs for their switches and routers. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
10. Finisar – Finisar offers SFPs for a range of applications, including data center, telecommunications, and industrial. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
11. Mellanox – Mellanox offers SFPs for their switches and routers. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and InfiniBand.
12. Molex – Molex offers SFPs for a range of applications, including data center, telecommunications, and industrial. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
13. TP-Link – TP-Link offers SFPs for their switches and routers. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
14. Transition Networks – Transition Networks offers SFPs for a range of applications, including data center, telecommunications, and industrial. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
15. Ubiquiti Networks – Ubiquiti Networks offers SFPs for their switches and routers. The SFPs support a range of interfaces, including Gigabit Ethernet, Fibre Channel, and SONET/SDH.
16. Riedel – Riedel’s MediorNet SFPs, for example, are designed specifically for use with their MediorNet media network system. These SFPs support various protocols such as Ethernet, SDI, and MADI, and are available in various formats such as single-mode, multi-mode, CWDM, and DWDM.
In addition, Riedel also offers SmartPanel SFPs, which allow for flexible connectivity between SmartPanels and other systems such as the MediorNet media network. These SFPs support data rates of up to 10 Gbps and are available in various formats such as LC or SC connectors.
It’s important to note that while Riedel’s SFPs are designed for their specific systems, they still adhere to industry-standard protocols and can be used with other systems as well.
Overall, SFPs from different companies offer a range of features and specs depending on the application and interface type. Some common features of SFPs include hot-swappability, automatic signal detection and configuration, and low power consumption. It is important to select the right SFP for your specific application and ensure compatibility with your switch or router.
You Need a Major career move, promotion, complete overhaul, change to something new altogether. Now what? Here are some steps to follow:
1. Target companies you’d like to work for. Research them, not only the bottom line, but their products (use cases), company culture, and the people who work there, especially people on the hiring team and HR. LinkedIn is a great resource for this.
2. Follow the companies AND the people at the companies, start commenting on their posts. These comments should add value to what was already said, and also tag the person who posted the information, state or reword what they’ve stated and add to it. Keep going, it’ll take time to establish a connection with people. Don’t ask for any recommendations or help, add validation to what was posted.
3. Find a unique issue that you can solve for the company. Then, begin to formulate a pitch deck for your solution. Find out what you can improve. Make your pitch about helping them, not about yourself. Find the opportunity to present your solution.
Make sure you find out what the Company’s goals and current/future initiatives are. Be the Solution /Bridge.
With your pitch deck show the value you’re adding, without making it about yourself. Add in industry data to validate your information.
5. Outline your ideas, THEN your background.
6. Send your contacts (after establishing them- see #2 above) an email asking for a chat about your idea. Have your pitch deck ready. Make sure it’s in a logical order, and succinct. Also make sure you have prepared some small talk based on what you’ve gleaned from your contacts posts and information pages. What groups do they and you belong to? Have that ready to go!
After the chat, and your contact is onboard with you – THEN the ask can come. Ask for the referral, now you have an in-house cheerleader.
What if you’ve worked with someone and lost contact over the years?
Ok, you’ve lost touch with someone. You met / were friends with someone while working and now Need to contact them regarding a job opportunity. What do you start with? “Hello” ?
Don’t over complicate it.
I’m trying to reach certain people I started out my career with, and worked alongside with for years, but that was 33 years ago too.
I did start with “Hello, it’s been a long time.” We picked up conversation like we hadn’t missed a beat, which I find a lot of in broadcasting. I loved working with and for just about every employer in my career.
Luckily, within the first conversation I was able to bring up the job opportunity, and “my person” said they’d be happy to help. You’ll find most people will, as they have or will need a similar recommendation themselves in the future.
For more information please reach out! 👍 Comment / Follow Me – it’s free!
I know everyone can just goto a help page. But, here’s a list of Shortcuts for Mac Users
100 keyboard shortcuts for Mac Users
- Command + C: Copy
- Command + V: Paste
- Command + X: Cut
- Command + A: Select all
- Command + Z: Undo
- Command + Shift + Z: Redo
- Command + F: Find
- Command + G: Find next
- Command + Shift + G: Find previous
- Command + S: Save
- Command + Shift + S: Save as
- Command + O: Open
- Command + W: Close window
- Command + Q: Quit
- Command + N: New window
- Command + T: New tab
- Command + Shift + T: Reopen last closed tab
- Command + Tab: Switch between open applications
- Command + Shift + Tab: Switch between open applications in reverse order
- Command + Option + Esc: Force quit application
- Command + Space: Open Spotlight search
- Command + Shift + 3: Take a screenshot of the entire screen
- Command + Shift + 4: Take a screenshot of selected area
- Command + Shift + 4, then Space: Take a screenshot of a window
- Command + Delete: Move selected item to Trash
- Command + Shift + Delete: Empty Trash
- Command + Up Arrow: Scroll to the top of a document or web page
- Command + Down Arrow: Scroll to the bottom of a document or web page
- Command + Left Arrow: Move to the beginning of a line
- Command + Right Arrow: Move to the end of a line
- Command + Shift + Up Arrow: Highlight text from the current cursor position to the beginning of a document or web page
- Command + Shift + Down Arrow: Highlight text from the current cursor position to the end of a document or web page
- Command + Shift + Left Arrow: Highlight text from the current cursor position to the beginning of a line
- Command + Shift + Right Arrow: Highlight text from the current cursor position to the end of a line
- Command + Option + D: Show/hide Dock
- Command + Option + Control + Esc: Force restart Mac
- Command + Option + Control + Power button: Force shutdown Mac
- Command + Shift + N: Create a new folder
- Command + Shift + A: Open Applications folder
- Command + Shift + U: Open Utilities folder
- Command + Shift + H: Open Home folder
- Command + Shift + D: Open Desktop folder
- Command + Shift + G: Open Go to Folder dialog box
- Command + Option + M: Minimize all windows
- Command + Option + V: Move files to another folder without copying them
- Command + Option + P: Show/hide Preview pane in Finder
- Command + Option + L: Show/hide Sidebar in Finder
- Command + Option + C: Copy selected item to the Clipboard
- Command + Option + N: Create a new folder in the current location
- Command + Option + T: Add files to Finder sidebar
- Command + Shift + A: Open Applications folder
- Command + Shift + G: Open Go to Folder dialog box
- Command + Shift + H: Open Home folder
- Command + Shift + I: Open iCloud Drive
- Command + Shift + O: Open Documents folder
- Command + Shift + U: Open Utilities folder
- Command + Option + Esc: Force quit an application
- Command + Option + Shift + Esc: Force quit frontmost application
- Command + Option + Control + Esc: Quit all applications and restart computer
- Command + Shift + 1: View as icons
- Command + Shift + 2: View as list
- Command + Shift + 3: View as columns
- Command + Shift + 4: View as cover flow
- Command + Option + S: Show/hide Sidebar in Safari
- Command + Option + B: Show/hide Bookmarks bar in Safari
- Command + Option + P: Show/hide Favorites bar in Safari
- Command + Option + R: Reload web page in Safari
- Command + Option + F: Enter full-screen mode in Safari
- Command + Option + L: Show/hide Downloads window in Safari
- Command + Option + D: Add current webpage to Reading List in Safari
- Command + Option + C: Show/hide Web Inspector in Safari
- Command + Option + T: Open new tab in Safari
- Command + Shift + T: Reopen last closed tab in Safari
- Command + Number: Open corresponding bookmark in Safari
- Command + Shift + [ or ]: Switch between tabs in Safari
- Command + Click: Open link in new tab in Safari
- Command + Shift + Click: Open link in new window in Safari
- Command + Option + Click: Download linked file in Safari
- Option + Tab: Switch between open applications in reverse order
- Option + Shift + Tab: Switch between open applications
- Control + Tab: Switch between tabs in a tabbed application
- Control + Shift + Tab: Switch between tabs in a tabbed application in reverse order
- Control + Option + Command + Eject: Quit all applications and restart computer
- Control + Option + Command + Power button: Quit all applications and shut down computer
- Control + Command + F: Toggle full-screen mode in some applications
- Control + Command + D: Show definition of selected word
- Control + Option + Command + D: Show/hide Dock
- Control + Command + Space: Open Emoji & Symbols window
- Control + Option + Command + 8: Invert colors of screen
- Control + Option + Command + Comma: Decrease display contrast
- Control + Option + Command + Period: Increase display contrast
- Control + Command + Power button: Put computer to sleep
- Control + Shift + Power button: Put display to sleep
- Control + Option + Command + T: Add or remove time zone
- Control + Shift + Command + T: Add or remove time zone in reverse order
- Control + Command + F1: Toggle VoiceOver on/off
- Control + Option + Command + F2: Toggle Zoom on/off
- Control + Option + Command + F3: Toggle Invert Colors on/off
- Control + Option + Command + F4: Toggle Grayscale on/off
- Command + Click and drag over a column of links: Highlight the column of links and open each link in its own tab.
I hope that helps!
It’s essential to have sufficient bandwidth to have an optimal streaming experience. So, let’s dig into the bandwidth requirements for different resolutions and streaming services.
Understanding Video Bitrate
Video bitrate is an important metric independent of other factors like resolution, frame rate, and audio quality that impact a viewer’s streaming experience. It represents the amount of data per second your video source supplies and is a critical factor in delivering an enjoyable experience.
Streaming Services and Bitrate
It’s interesting to note that compared to a Blu-ray disc, streaming services like Netflix need to use compressed streams with considerably lower bitrates. Despite their best efforts to maintain the quality through various compression techniques, a higher bitrate equals more data and a superior image quality.
Minimum Bandwidth Required
To sustain a smooth, buffer-free stream at varying resolutions, one should consider these average minimum bandwidth requirements. Whether you’re using older equipment or new streaming devices with the latest TV models, Broadcasters generally provide viewers with the best possible streaming experience.
Following is the general resolution for videos and Minimum download speeds required:
480p (SD): Needs about 3-4 Mbps
720p (HD): Needs about 5-8 Mbps
1080p (HD): Needs about 8-10 Mbps
2160p (4K): Needs about 32 Mbps
4320p (8K): Needs about 120 Mbps
Required Bandwidth
H264 H265
1280×720(HD) 3Mbps 1.5Mbps
1920X1080(FHD) 6Mbps 3Mbps
3840×2160(UHD) 25Mbps 12Mbps
3820x2160p(4K) 32Mbps 15Mbps
7640×4320(8K) See notes below
1080p Streaming required Bandwidth & Internet Speed
1080p streaming videos are at a display resolution of 1920X1080, and it offers full HD video content on the Internet. These videos have more clarity and resolution than an HD video at 720p. Also, 1080p video consumes more amounts of data compared to SD and HD streaming. As stated in the above table and with the H264 codec, the recommended bandwidth is 6 Mbps, and with the H265 codec, it usually requires up to 3 Mbps.
4K and 8K Streaming Bandwidth requirement / Internet Speed
To stream 4K HDR content, one needs a 4K UHD TV with HEVC decoder and HDR support.
4K videos with a display resolution of 4096p x 2160p offer the most life-like video content on the Internet. These high definition videos have more visual information than ever about the texture, color, shapes than an HD video. Unfortunately, 4k consumes enormous amounts of data compared to SD, HD & FHD streaming. With the H264 codec, the recommended bandwidth is 32 Mbps, and with the H265 codec, it could be up to 15 Mbps. To stream 4K HDR content, one needs a 4K UHD TV with HEVC decoder and HDR support.
Even with an 8K streaming service, most people wouldn’t be able to use it. Platforms like Netflix specifies a 25 Mbps stream for 4K content. This requirement seems to quadruple as there is no H.265 standard alongside 8K to reduce the file size. Netflix consumes 3.1GB/hour at 1080p for 60fps video and even 7GB/hour at 4K. If we assume that the transition from 4K to 8K consumes an equivalent amount of bandwidth to 1080p – 4K transition, the per hour bandwidth requirement to stream 8K content would be nearly 6.44GB – 19.2GB/hour for 23.976fps content. This is still a high bandwidth rate to burn out.
The bitrate for 8K video services that use HEVC is between 85 Mbps for satellite and 65 Mbps for OTT.
When you implement Content Aware Encoding (CAE) used in combination with HEVC, you can lower the bit rate for 8K distribution by another 50%. CAE leverages the mechanics of the human eye to assess video quality and optimize encoding parameters in real-time.
If you have any questions please reach out. 👍 Follow, and Comment- it’s free!
Video production involves several stages, each with its unique set of challenges. Some common pain points in video production are:
1. Pre-production planning: To avoid delays, budget overruns, and scope creep, video production teams should establish clear goals and objectives, outline the desired outcome, and develop a detailed production plan that aligns with the production budget and scope. Project management software can help manage tasks, set deadlines, and monitor progress, while regular meetings and status reports can keep everyone on the same page.
2. Equipment-related issues: To prevent equipment failures or inadequacies, video production teams should invest in quality equipment, perform regular maintenance and testing, and have backup equipment on hand. Additionally, having a skilled technician on the team or on call can quickly resolve equipment-related issues and reduce downtime.
3. Creative and technical collaboration: Video production teams can improve creative and technical collaboration by establishing clear communication channels and processes, involving everyone in the brainstorming phase, and setting realistic expectations about the project’s technical feasibility. One solution is to use a review and approval platform that collects feedback and changes from all team members and keeps everyone informed about progress.
4. Time constraints: To manage tight video production timelines, video production teams should prioritize tasks, establish clear timelines with deadlines, and allow for some flexibility. Outsourcing some tasks or using pre-made templates and resources can also save time and reduce workload.
5. Post-production challenges: To avoid post-production delays, video production teams should establish a clear post-production plan, including deadlines, resources needed, and project milestones. Collaborating with a post-production specialist or outsourcing some post-production tasks can also help manage the workload and free up resources and time.
6. Delivery and distribution: To ensure a smooth delivery and distribution process, video production teams should carefully consider the delivery platform and format and create multiple versions for different devices and platforms. Using cloud storage platforms can make sharing and delivering large files easier.
7. Budget and finances: To stay within the allocated budget, video production teams should create a detailed budget plan, track expenses, and prioritize expenses according to project needs. Being transparent about the budget and communicating any potential expenses can reduce surprises and avoid overruns.
👍 Comment and Follow me – it’s free!
PTP (Precision Time Protocol) is a protocol used for synchronizing clocks in a network. It is a time synchronization protocol that is designed to provide high-precision time and frequency synchronization for networked devices.
PTP (Precision Time Protocol) is an IEEE 1588 standard protocol that synchronizes real-time clocks of connected nodes in a distributed system using a network. This protocol establishes a leader-follower hierarchy among the nodes (referred to as clocks) where followers synchronize with their leaders, and the leader-follower relationship is determined by a Best Master Clock (BMC) algorithm. Through dynamic relationship determination, the PTP network can simplify the interconnect graph, resolving cycles down to a tree of leaders and followers. The grandmaster, located at the root of the tree, synchronizes with GPS and serves as the ultimate leader for all clocks. Interior nodes in this network are called boundary clocks (BC) and have follower ports and one or more leader ports. PTP can achieve high accuracy, even within sub-microsecond limits on local networks.
PTP works by sending time signals between devices, a best grandmaster, leader, and a follower clocks. The best grandmaster clock sends synchronization messages to leader clocks, and the leader clocks adjust their clock frequency and time to match the best grandmaster clock. The leader clocks send synchronization messages over their network(s), and the follower clocks adjusts their clock frequency and time to match the leader clock. Again, aka boundary clocks. PTP uses precise hardware timestamps to measure the time between devices.
PTP is often used in real-time systems, where accurate timing is essential, such as in audio and video production or industrial automation. It can also be used in some communication networks, such as 5G and industrial Ethernet.
Each of the following company’s products support and /or generate PTP:
1. Leader Electronics Corporation offers the LT8900 and the LT8910A PTP Time Server/Grandmaster Clocks, both of which are designed to provide accurate PTP synchronization for broadcast and post-production applications. The devices generate IEEE 1588-2008 PTP packets with sub-microsecond timing accuracy and support PTP profiles such as the Audio-Video Profile (PTP AV) and the IEEE Power Profile. They also feature two independent 10 Gigabit Ethernet interfaces, allowing for redundant operation and the ability to simultaneously serve as a Network Time Protocol (NTP) server. The LT8910A additionally offers dual electrical inputs, enabling it to function as a redundant PTP Grandmaster clock.
2. Cisco Systems, Inc. offers a range of PTP solutions, including routers, switches, and network interface cards that support IEEE 1588v2. Some of the models that support PTP generation and/or synchronization include the Cisco Catalyst 9300 Series Switches, the Cisco 9200 Series Switches, the Cisco NCS 1002, the Cisco NCS 540 Series Routers, and the Cisco NCS 560 Series Routers. These devices provide high-precision timing capabilities for a range of applications, including 5G mobile networks, industrial automation, and financial trading. They can serve as a PTP Grandmaster clock, Leader clock and/or follower, depending on the application requirements, and have features such as hardware timestamping, clock quality monitoring, and PTP profiles for specific industries.
3. Riedel Communications offers the MediorNet MN-C-OPT-HDMI PTP Media Interface Card, which is designed to provide PTP support and synchronization for its MediorNet media network. The card supports SMPTE ST 2059 PTP profiles and is capable of acting as both a PTP Grandmaster clock and a PTP client. It features multiple input and output ports, including an HDMI port for timecode distribution, and has a high-precision oscillator for sub-microsecond timing synchronization. The card also supports redundancy, multi-casting of PTP messages, and monitoring and configuration via a web-based interface. Additionally, Riedel’s Artist and Bolero communications systems offer PTP synchronization for intercom communication applications.
4. Meinberg Funkuhren offers a variety of PTP Time Servers/Grandmasters that are designed to provide accurate PTP synchronization for a range of applications, including telecom, financial trading, and industrial automation. Some of the models include the LANTIME M900/M600/M4000 PTP Time Servers and the IMS – M400 Industrial PTP Time Server. These Time Servers support IEEE 1588-2008 PTP profiles and various ITU-T G.827x telecom profiles such as G.8275.1 and G.8275.2. They can serve as a PTP Grandmaster clock, Leader, and/or follower clock, depending on the application requirements, and offer features such as hardware timestamping, fault-tolerant design, and redundant power supplies. Meinberg also offers PTP software and network interface cards that support PTP generation and synchronization.
5. Tektronix offers a range of PTP hardware and software products that support PTP generation, including time servers, grandmasters, and clients that generate and measure PTP signals with high accuracy and precision. These devices are specifically designed for PTP and are capable of supporting PTPv1, PTPv2, and PTP-RA.
6. Juniper Networks provides networking equipment that supports PTP generation, including network switches and routers that are capable of handling PTP traffic, as well as software tools for the configuration and management of PTP networks. Juniper’s devices are designed to support PTPv2 and can be used in a variety of PTP network architectures.
7. Ross Video offers PTP generation solutions for the broadcast industry, including PTP time code generators and servers that are designed to synchronize video and audio signals across multiple cameras and equipment. These devices support PTPv2 and PTP-RA and are specifically designed for the broadcast environment.
8. Mellanox Technologies provides network adapters and switches that support PTP generation, allowing for the transmission and synchronization of time-critical data across high-speed networks. Mellanox’s devices support PTPv2 and can be used in a variety of PTP network architectures, including data center and telecommunications applications. Nvidia does not offer a Precision Time Protocol (PTP) implementation as a standalone product. However, Nvidia’s Mellanox networking solutions product line includes NICs (network interface cards) and switches that support PTP as well as other timing protocols such as Network Time Protocol (NTP), Precision Time Protocol (PTP), and IEEE 802.1AS.
These products help enable synchronization throughout data centers and other networked deployments that require tight synchronization between multiple devices, such as high-performance computing, financial trading, media and entertainment industries, and industrial control systems. In addition to PTP support, Nvidia Mellanox’s networking solutions offer low-latency and high-bandwidth capabilities, making them well-suited for demanding applications.
9. Spectracom specializes in precise timing solutions, including PTP servers and PTP-enabled network devices for PTP generation. Spectracom’s devices support PTPv1, PTPv2, and PTP-RA and are designed to provide high levels of accuracy and precision for a variety of industries, including telecommunications, defense, and finance. They also offer software tools for PTP network analysis and management.
10. Selenio Media Communications offers support for various versions of Precision Time Protocol (PTP), including PTPv1, PTPv2, and PTP Profile for Professional Broadcast Applications (PTP-RA). This enables customers to synchronize media processing and transport devices in IP-based broadcasting systems with sub-microsecond accuracy. It offers a single timing source and does not have built-in redundancy.
Note: this is not an exhaustive list of PTP generators or supporters thereof.
In summary, the main differences between PTP offerings are the level of accuracy, redundancy, and interoperability features they offer, allowing customers to select the product that best suits their requirements for timing accuracy, scalability, and reliability.
I’ve been asked if I’m being paid for this post. No, I am not being paid to share this information, nor do I work for any named company within the article.
Please 👍 Follow and Comment- it’s free!
Selenio is a product line of video processing and delivery solutions offered by Imagine Communications, a company that provides end-to-end software-based solutions for media and entertainment industry. The Selenio product line includes both hardware and software components designed to address the complex and evolving needs of broadcasters and content providers in delivering high-quality video across a variety of platforms and devices.
The Selenio product line includes solutions for video encoding, transcoding, compression, decoding, and delivery, as well as tools for managing and monitoring video distribution workflows. Selenio offers flexible deployment options, including on-premises, cloud-based, and hybrid environments. The solutions also support a wide range of industry-standard video formats and protocols, including H.264, MPEG-2, MPEG-4, HEVC, and ATSC 3.0.
In addition to video processing and delivery, the Selenio product line also includes solutions for signal processing, audio processing, and contribution and distribution. These solutions are designed to help broadcasters and content providers manage the entire content delivery chain, from acquisition to distribution, while ensuring the highest levels of quality and flexibility.
The Selenio product line offers different video processing models that provide various capabilities. Some of the specific video processing models offered by Selenio include:
1. Selenio Media Convergence Platform (MCP): This software-based solution provides end-to-end video processing and delivery capabilities for live, linear and on-demand content across different devices and platforms, including IP, RF and satellite networks. Selenio MCP includes modules for encoding, decoding, transcoding, packaging, and delivery, enabling the repurposing of content for multiple formats and screens.
2. Selenio MCP3: This is the latest version of the Selenio MCP and is designed to be fully software-defined, offering a cloud-native architecture that scales quickly and easily. MCP3 provides intelligent orchestration across on-premise and cloud-based resources while providing support for advanced video processing features such as high-bitrate 8K codecs.
3. SelenioFlex File: This solution is designed for file-based workflows and provides functionality for transcoding, packaging, and delivery. Content can be repurposed and transcoded to multiple resolutions and formats, including high-quality 4K and 8K, depending on the needs of the service.
3a. Selenio Flex: This solution offers advanced video processing features such as HDR and WCG processing, audio loudness control, and content replacement, in a single hardware-based appliance. It also provides advanced video compression technology, including HEVC, to optimize bandwidth utilization and enable distribution of high-quality content to an increasing number of devices.
4. Selenio One: This is a compact, 1RU encoding/transcoding platform that provides high-quality, low-latency video streaming for IPTV and other IP-based video delivery applications. Selenio One has a wide range of codecs and resolutions and is ideal for applications where space is limited, such as outside broadcast (OB) trucks or small-scale IPTV operations.
5. Selenio Network Processor (SNP): This is a high-density video and audio processing platform that is designed for the most demanding broadcast and media applications. Selenio SNP provides a flexible and modular architecture that can be configured to support a wide range of codecs, resolutions, and protocols, including IP, ASI, and SDI.
6. Selenio UDP Gateway: This solution is designed to enable the smooth delivery of live video content to viewers over the internet. Selenio UDP Gateway can receive an uncompressed multicast transport stream from an encoder and distribute it to a large number of viewers with low latency and high reliability. It also supports adaptive bit rate (ABR) streaming, which enables the delivery of multiple quality versions of the same video to different devices based on each device’s bandwidth and resolution requirements.
7. Selenio CMM: The Content Management System (CMM) is designed to provide intelligent workflow automation capabilities to the entire content supply chain. CMM provides comprehensive metadata management, asset tracking, and data governance, enabling content providers to efficiently manage and organize their libraries and produce more effective content delivery strategies.
Overall, the delivery solutions offered by Selenio utilize advanced video processing, metadata management, and delivery capabilities to enable content providers to deliver high-quality video content seamlessly across multiple platforms and devices.
How does Selenio support
Precision Time Protocol (PTP), including PTPv1, PTPv2, and PTP Profile for Professional Broadcast Applications (PTP-RA).
Selenio Media Convergence Platform from Imagine Communications supports PTP (Precision Time Protocol) in different ways, including PTPv1, PTPv2, and PTP Profile for Professional Broadcast Applications (PTP-RA).
Selenio can act as a PTP grand leader clock or follower clock, depending on the customer’s requirements. It can synchronize the internal timing of each device in the platform, including video and audio processing units, switchers and routers, and other IP-connected devices, with sub-microsecond accuracy.
The PTP implementation in Selenio is compliant with the relevant IEEE standards and guidelines, ensuring interoperability and compatibility with other PTP devices. It uses hardware-assisted timestamping to achieve the required level of precision, and supports various transport protocols, such as IEEE 802.3av, IEEE 1588-2008, and AES67.
Selenio also supports PTP Profile for Professional Broadcast Applications (PTP-RA), which specifies additional requirements for PTP accuracy, reliability, and scalability in broadcast environments. Selenio’s PTP implementation is designed to meet these requirements and provide synchronization for demanding broadcast workflows.
Lastly, Selenio PTP Gateway can convert between different PTP profiles, including those used in broadcast and IT networks, to enable interoperability between different PTP installations. This allows broadcasters to take advantage of the benefits of the latest PTP technology while maintaining compatibility with existing PTP deployments.
In summary, Selenio supports PTP in different ways, including as a PTP grandmaster or slave clock, with compliance to IEEE standards and PTP-RA, using hardware timestamping, and protocol flexibility for interoperability through its PTP Gateway.
I’ve been asked if I’m being paid for this post. No, no I am not being paid to share this information, nor do I work for Selenio.
Here are some of Selenio’s biggest competitors:
As Selenio has a wide range of products and services, it’s difficult to give a comprehensive comparison for each competitor listed. However, I can provide you with a general idea of what each competitor offers:
– Cisco Systems: a technology company that provides networking, cybersecurity, and collaboration products and services.
– Evertz Microsystems: a technology company that provides video and audio infrastructure software and hardware solutions for broadcasters and media companies.
– Harmonic Inc.: a technology company that provides video delivery infrastructure solutions for cable, satellite, and OTT video providers.
– Zixi: a technology company that provides software-defined video platform solutions for broadcasters and OTT video providers.
– Net Insight: a technology company that provides media transport solutions for broadcasters and media companies.
– Nevion: a technology company that provides video transport solutions for broadcasters and media companies.
– Grass Valley: a technology company that provides broadcast and media equipment and solutions for live production and content delivery.
– Elemental Technologies (an Amazon Web Services company): a technology company that provides software-defined video solutions for broadcasters and OTT video providers.
– Ericsson Inc.: a technology company that provides broadcast and media services and solutions for content owners, broadcasters, and service providers.
– NewTek Inc.: a technology company that provides video production and live streaming solutions for broadcasters and content creators.
– Ross Video: a technology company that provides broadcast and media equipment and solutions for live production and content delivery.
– Appear TV: a technology company that provides broadcast and streaming solutions for operators, broadcasters, and content providers.
– Blackmagic Design: a technology company that provides video production solutions for broadcasters, filmmakers, and content creators.
– ATEME SA: a technology company that provides video encoding and transcoding solutions for broadcasters and content owners.
– Haivision Systems: a technology company that provides video streaming solutions and services for broadcasters and enterprises.
– Telestream LLC: a technology company that provides video transcoding, workflow automation, and quality monitoring solutions for broadcasters and media companies.
– MediaKind: a technology company that provides broadcast and media solutions for content owners, broadcasters, and service providers.
– ChyronHego: a technology company that provides graphics solutions for sports, news, and live events.
– Lawo AG: a technology company that provides audio and video production solutions for broadcasters and media companies.
Please note that the above list is not exhaustive and there may be other competitors within the industry. The competitiveness of each of these companies varies depending on the specific product and service category.
Overall, each of these companies has its own unique strengths and areas of expertise in the media and broadcast industry. It will depend on the specific needs of the customer to determine which solution is the best fit.
In the context of sports HD broadcasting, a 4K stack usually refers to the technical infrastructure required for live production and delivery of 4K Ultra High Definition (UHD) content. This typically includes specialized cameras, video switchers, routers, servers, storage systems, encoders, and decoders that are specifically designed to handle high-resolution video streams.
Building a 4K stack for sports HD broadcasting requires a combination of hardware and software solutions that are optimized for low-latency, high-bandwidth video processing and delivery. Here are some key considerations to keep in mind:
1. Choose the right equipment: Select cameras, switchers, encoders, and other equipment that are designed to handle 4K UHD content, and ensure that they are compatible with one another and your network infrastructure.
2. Use high-capacity storage: 4K UHD video requires a significant amount of storage capacity, so it’s important to use high-capacity storage systems that can handle the large amounts of data generated by live sports broadcasts.
3. Optimize your network: Make sure that your network infrastructure is capable of handling the bandwidth requirements of 4K UHD video streams, and that it is properly configured to minimize latency and ensure reliable data transmission.
4. Utilize specialized software: Use specialized video processing software that is optimized for 4K UHD video and can handle the unique demands of live sports broadcasts, such as fast-paced action, multiple camera angles, and dynamic lighting conditions.
There are several products available for specialized video processing software that is optimized for 4K UHD sports broadcasts. Some of the popular ones include:
• EVS XT4K – A specialized server system that provides live slow-motion replay, super slow-motion, and on-the-fly editing capabilities for 4K content.
• Grass Valley K-Frame V-series – A live production switcher that supports 4K UHD resolution and provides advanced features such as HDR support, up/down/cross-conversion, and color correction.
• Avid MediaCentral – A comprehensive media management and workflow platform that provides real-time collaboration, content distribution, and automated processing capabilities for 4K UHD video.
• Blackmagic Design ATEM 4 M/E Broadcast Studio 4K – A live production switcher that supports 4K UHD resolution and provides advanced features such as multi-camera switching, chroma keying, and 3D graphics.
• Sony HDC-5500 – A 4K UHD system camera that includes advanced features such as high-speed image capture, remote control capabilities, and image stabilization for capturing fast-paced sports action.
• Ross Video Carbonite Ultra – A live production switcher that supports 4K UHD resolution and provides advanced features such as customizable macros, multi-screen outputs, and virtual set creation.
• Panasonic’s Kairos video processing platform is designed to handle 4K UHD video, including fast-paced sports action. The system can support multiple video inputs, including baseband, IP, and NDI sources, and provides real-time switching and four layers of DVE with key and fill.
Additionally, Kairos has an optional hardware accelerator that can be added to the system to handle up to 16 4K inputs and 8 4K outputs, providing the necessary processing power to handle the demands of live sports broadcasts.
Its flexible architecture and scalable design, Kairos offers a solution that can handle the unique requirements of live 4K UHD sports video production.
These products are designed to handle the complex requirements of live 4K UHD sports broadcasting and enable production teams to deliver high-quality, engaging coverage of sporting events.
By following these best practices, you can build a 4K stack for sports HD broadcasting that is capable of delivering high-resolution video and allowing viewers to experience the action in stunning detail.
Some Sports Networks / Broadcasters have built their 4K stack for sports broadcasting through a combination of hardware and software solutions. Here are some key components and technologies used by them to deliver 4K sports broadcasts:
1. Cameras: Broadcasters use specialized 4K UHD cameras that are capable of capturing high-quality sports footage with stunning detail and clarity. These cameras are typically positioned around the arena or stadium to capture multiple angles of the action.
• Sony, Panasonic, Canon, and Red are all popular choices for 4K broadcast cameras.
2. Production equipment: Broadcasters use specialized video production equipment that is designed to handle the high-resolution video streams generated by 4K UHD cameras. This includes video switchers, graphics systems, and other production equipment that is optimized for 4K UHD workflows.
• Brands like Grass Valley, Ross Video, and Blackmagic Design offer a range of specialized production equipment for 4K broadcasts.
3. Network infrastructure: Broadcasters havr built a high-bandwidth network infrastructure that is capable of handling the large amounts of data generated by 4K UHD video streams. This includes high-speed fiber optic connections, IP video delivery, and other networking technologies.
• Companies like Arista Networks, Cisco, and Juniper Networks provide network infrastructure solutions that are optimized for high-bandwidth 4K streaming.
4. Storage and encoding: Sport Broadcasters use specialized storage systems and video encoding software to capture, process, and deliver 4K UHD video streams in real-time. This includes high-capacity storage and encoding systems that can handle the large amounts of data generated by live sports broadcasts.
• Brands like EVS, Harmonic, and Telestream offer specialized storage and encoding systems that are designed to handle the large amounts of data generated by 4K broadcasts.
5. Display technology: Finally, Sports Broadcasters work with technology partners to ensure that their 4K UHD broadcasts can be viewed on a range of consumer devices, including 4K UHD televisions and streaming devices. They use technologies like High Dynamic Range (HDR) to ensure that the image quality and color accuracy of their broadcasts meet the highest standards.
• Brands like Sony, Samsung, LG, and Vizio are all popular brands for 4K UHD televisions, while streaming devices like Roku, Amazon Fire TV, and Apple TV are widely used for delivering 4K content to viewers.
By leveraging these components and technologies, Broadcasters have been able to build a 4K stack that is capable of delivering stellar sports broadcasts with breathtaking detail and clarity.
It’s important to note that these brands and models are only examples and many Sports Broadcasters may use different equipment depending on the specific needs of their broadcasts.
End note: I am not currently an employee of, and I was not paid by any named company in this article for the information.
👍 Comment and Follow Me – it’s free!
Comms are an essential for BroadcastTV, A/V, Theater, Enterprise Events, and so much more.
Intercom Brands and Applications
• Clear-Com Intercoms: Used in live events, broadcast production, theater, corporate AV, and government/military installations.
• CommLink Intercoms: Designed for use in professional intercom applications in the broadcasting, live production, and AV fields.
• RTS Intercoms: Used in live events, broadcast production, theater, and military applications.
• Telex Intercoms: Used in live events, broadcast production, public safety, and aviation applications.
• Pliant Technologies intercoms: Used in live events, broadcast production, theater, sports, and corporate AV.
• ASL intercoms: Used in live events, broadcast production, theaters, sports arenas, and corporate AV.
•Beyerdynamic intercoms: Used in radio and TV broadcasting, film production, theater, and event technology.
• Bolero wireless intercom systems: Used in live events, broadcast production, theater, and sports.
• Cuelight: Used in broadcast, studio, and video production applications.
• Digital Partyline: Used in live events, broadcast production, and theater.
• Gamecom Wired Communication System: Designed for gaming applications.
• HelixNet Digital Partyline: Used in broadcast production, live events, theater, and industrial comms.
• HME DX Series Wireless Intercoms: Used in broadcast production, live events, sports, and theater.
• Hybrid Intercom System: Used in broadcasting, theater, and event production.
• KP-Series Key Panels: Used in broadcast production, theater, live events, and corporate AV.
• LQ Series IP Connectivity: Used for IP-based intercom and audio networking.
• PL Pro MS-232 Remote Control Unit: Used in broadcast production, live events, theater, and corporate AV.
• PortaCom Intercom Systems: Used in broadcast production, theater, and live events.
• Radio Active Design Intercom Systems: Used in broadcast production, live events, and television studios.
• RadioCom Wireless Intercoms: Used in broadcast production, live events, and theater.
• Studio Technologies Intercoms: Used in broadcast production, live events, and theater.
• Tronios Intercoms: Used for stage communication in small to medium-sized events and theaters.
• Unity Intercoms: Used in broadcast production, live events, theater, and corporate AV.
• Vega wireless intercom systems: Used in broadcast production, live events, theater, sports, and corporate AV.
• Wireless Intercom System (WiS): Used in broadcast production, live events, sports, theaters, and corporate AV.
