What is S3? Buckets? SDKs? A Quick Overview

Amazon S3, or Simple Storage Service, is a cloud-based storage service provided by Amazon Web Services (AWS). It allows users to store and retrieve any amount of data from anywhere on the web, making it a popular choice for individuals and businesses alike.

At its core, Amazon S3 is an object storage system. This means that data is stored as objects, rather than in a traditional file hierarchy. Objects can be of any size, from a few bytes to terabytes, and are stored in containers called buckets. Users can create, manage, and delete buckets through the AWS Management Console or with the AWS SDKs.

Oh riiiiight …What are SDKs? 😊

SDK stands for Software Development Kit. It is a collection of software development tools that allow developers to create applications for a specific software package, hardware platform, operating system, or programming language. SDKs usually include libraries, APIs, documentation, and other utilities that help developers to build software applications that integrate with existing systems or platforms.

Now Back to S3…..

One of the key benefits of S3 is its scalability. It can handle an infinite amount of data and can be accessed from anywhere in the world. This is achieved through a distributed architecture, where data is stored across multiple servers and locations. This also means that data is highly available and durable, with multiple levels of redundancy and built-in error correction.

Amazon S3 also offers a range of features for managing data. Users can set up access controls, encryption, and versioning to ensure that their data is secure and accessible only to authorized users. They can also use lifecycle policies to automatically move data to lower-cost storage tiers or delete it after a certain period of time.

Under the hood, S3 uses a combination of technologies to provide its high performance and scalability. It uses a distributed system architecture, with data stored across multiple servers and locations. It also uses a highly optimized network stack, with low-latency connections to AWS services and the internet.

In addition, S3 uses advanced algorithms and caching techniques to optimize data retrieval. For example, it uses parallel processing to retrieve multiple objects at once, and it caches frequently accessed data for faster retrieval times.

Overall, Amazon S3 is a powerful and flexible storage solution that offers a range of features for managing and securing data. It is a popular choice for businesses of all sizes, from startups to large enterprises, and is used for a wide range of applications, from backup and archiving to content delivery and data analytics.

Do you use S3? Comment & Let me know how – it’s free!

Short Tutorial: UNC Paths in Broadcasting & Digital Streaming

Who May Need Them in Broadcasting & Digital Streaming?

UNC paths are commonly used in broadcasting to facilitate the transfer of large video or audio files between production facilities. This is because broadcasting often involves collaboration between multiple teams and locations, and UNC paths provide a standardized method of accessing shared resources on a network.

In broadcasting, UNC paths may be created by various professionals, including video editors, audio engineers, and IT staff. For example, a video editor may use a UNC path to access a shared folder containing footage that another editor has uploaded from a remote location. Meanwhile, an IT staff member may use a UNC path to connect broadcasting equipment to a shared storage device or backup system.

Overall, UNC paths are an essential tool for broadcasting professionals who need to collaborate on media production across a network.

What’s An UNC Path?

Creating an UNC (Universal Naming Convention) path is a method of identifying a network resource, such as a shared folder or printer, on a computer network. It uses a format that starts with two backslashes followed by the name of the computer and the name of the shared resource.

For Example:

For example, if a computer named “FILESERVER01” has a shared folder named “SharedDocs”, the UNC path to access it would be: \\FILESERVER01\SharedDocs

UNC paths are used when accessing network resources across different operating systems, such as Windows and Linux. They are also used in web addresses to access shared resources using a web browser. 

How-To Create One:

You can input a UNC path in various ways depending on the task you are trying to accomplish. Here are a few examples:

1. To access a shared folder on a network: Open File Explorer and type or paste the UNC path in the address bar at the top of the window. Press Enter to access the shared folder.

2. To map a network drive: Open File Explorer and click on “Map network drive” in the ribbon at the top of the window. In the “Drive” drop-down menu, choose a drive letter to assign to the mapped drive. In the “Folder” field, enter the UNC path of the shared folder you want to map. Click “Finish” to create the mapped network drive.

3. To reference a file in a UNC path in a script or program: Use the UNC path as you would any other file path, but include the double backslash at the beginning. For example, to reference a file named “Data.txt” in a shared folder named “Data” on a computer named “Server1”, the UNC path would be: \\Server1\Data\Data.txt

It’s important to note that UNC paths require proper permissions and authentication to access the shared resources.

Why You Need Them

UNC paths are necessary because they provide a standardized and consistent way of identifying and accessing network resources on a computer network. They allow users to access shared resources from any computer on the network, regardless of the computer’s operating system or location.

Without UNC paths, users would have to manually navigate to the network resource by IP address or hard-coded network path, which can be difficult and error-prone. UNC paths simplify the process by providing a unified naming convention that is easy to remember and use. They also provide security features that limit access to shared resources, ensuring that unauthorized users cannot access sensitive information.

How Do You Use Them? Please Comment.

USFL uses HRP Cameras, Drones, & Helmet Cams

The USFL (United States Football League) was a professional American football league that operated from 1983 to 1987. It was created to compete with the National Football League (NFL) during the spring and summer months.

The HRP (High-Resolution Panoramic) model is a type of camera that captures high-resolution panoramic images. It uses multiple cameras to capture a wide-angle view of a scene and then stitches the images together to create a seamless panoramic image.

Drones are unmanned aerial vehicles that can be used for a variety of purposes, including aerial photography and videography. They are equipped with cameras that can capture high-quality images and video footage from unique perspectives.

HelmetCams, also known as action cameras, are small cameras that can be attached to a helmet or other equipment to capture first-person point-of-view footage. They are often used in action sports such as snowboarding, skateboarding, and mountain biking.

Overall, these technologies have been used to enhance the viewing experience of sports broadcasts by providing unique and immersive perspectives on the action.

HRP (High-Resolution Panoramic) cameras are a type of camera that captures images with a wide field of view. They use multiple cameras to capture a scene from different angles and then stitch the images together to create a seamless panoramic image.

There are several manufacturers of HRP cameras, including Panoscan, Seitz, and Roundshot. Each manufacturer offers a variety of models with different resolutions and features. For example, the Seitz Roundshot D3 camera has a resolution of up to 80 megapixels and can capture full 360-degree panoramas in just a few seconds.

The process of stitching the images together is typically done using specialized software, such as PTGui or Autopano. These software programs use algorithms to analyze the images and find common features that can be used to align and blend the images together. The software can also correct for any distortion or perspective issues that may occur due to the different angles of the cameras.

Once the images are stitched together, they can be exported as a single panoramic image or as a virtual tour, which allows viewers to navigate through the scene using interactive controls. HRP cameras are often used in applications such as real estate photography, tourism, and virtual reality experiences, television broadcasts.

How is all of this technology used specifically in sports production broadcasts?

HRP cameras, drones, HelmetCams, and other similar technologies are used in sports production broadcasts to provide viewers with immersive and unique perspectives of the action.

HRP cameras are used to capture high-resolution panoramic images of stadiums and arenas, providing viewers with a 360-degree view of the venue. These images can be used for pre-game introductions, establishing shots, and post-game analysis. They can also be used to create virtual tours of the venue, allowing viewers to explore the stadium or arena in detail.

Drones are used to capture aerial footage of the action, providing viewers with a bird’s-eye view of the game. This footage can be used for replays, establishing shots, and highlights. Drones can also be used to capture footage of the surrounding area, giving viewers a sense of the location and atmosphere of the event.

HelmetCams are used to capture first-person point-of-view footage of athletes, providing viewers with a unique perspective of the action. This footage can be used for replays, highlights, and analysis. HelmetCams are often used in extreme sports such as snowboarding, skiing, and motocross.

Overall, these technologies are used to enhance the viewing experience of sports broadcasts, providing viewers with new and exciting perspectives of the action. The use of these technologies has become increasingly common in recent years, as broadcasters look for new ways to engage viewers and provide a more immersive viewing experience.

Sports Broadcasting Tracking Systems

Broadcasters and Sports Teams use varied tracking systems to enhance the viewer’s experience, as well as tracking players’ performance and stats.

Some examples:

1. NFL Football: The NFL uses a tracking system called Next Gen Stats, which uses sensors that are embedded in the shoulder pads of players to track their movements and performance on the field. This system captures data such as player speed, acceleration, and distance traveled, which is then used by broadcasters to create enhanced graphics and visualizations for viewers.

2. Major League Baseball: MLB uses a system called Statcast, which uses cameras and radar to track the movements of the ball and players on the field. This system captures data such as pitch velocity, spin rate, launch angle, and exit velocity, which is then used by broadcasters to provide real-time analysis and insights for viewers.

3. Major League Soccer: MLS uses a system called Opta, which collects data on player performance and match statistics. This data is then used by broadcasters to provide real-time analytics and insights, such as player heat maps, pass completion rates, and shot accuracy.

4. Basketball: The NBA uses a system called SportVU, which uses cameras and sensors to track player and ball movement on the court. This system captures data such as player speed, distance traveled, and shot trajectory, which is then used by broadcasters to provide enhanced visualizations and real-time analytics for viewers.

5. Golf: Golf has multiple tracking systems, including ShotLink, which uses lasers and cameras to track the trajectory and location of each shot on the course. This data is then used by broadcasters to provide real-time analysis and insights for viewers, such as distance to the hole, putting accuracy, and shot dispersion. Other golf tracking systems include TrackMan, which uses radar to track ball flight, and Toptracer, which uses cameras to track the flight path of each shot.

Overview: 30 Cloud Security Companies

Cloud security is a hot topic as streaming, processing, editing in the cloud is growing at a brakefast speed, not to leave out AI learning for meta data, closed captioning, transcribing, and DAI (Dynamic Ad Insertion). Keeping information secure is essential.

Below are 30 cloud security companies and the specific services they provide:

1. Microsoft Azure: Provides cloud security services such as identity and access management, threat protection, and security management.

2. Amazon Web Services (AWS): Offers security services such as identity and access management, data protection, network security, and compliance.

3. Google Cloud Platform (GCP): Provides security services such as identity and access management, data encryption, and threat detection.

4. Palo Alto Networks: Offers cloud security services such as firewalls, intrusion detection and prevention, and threat intelligence.

5. Symantec: Provides cloud security services such as data protection, threat detection, and compliance.

6. IBM Cloud: Offers security services such as access management, data protection, and threat intelligence.

7. Cisco Cloud Security: Provides cloud security services such as firewalls, intrusion detection and prevention, and threat intelligence.

8. McAfee: Offers cloud security services such as data protection, threat detection, and compliance.

9. CrowdStrike: Provides cloud security services such as endpoint protection, threat detection, and incident response.

10. Akamai Technologies: Offers cloud security services such as web application firewall, bot management, and DDoS protection.

11. Fortinet: Provides cloud security services such as firewalls, intrusion detection and prevention, and threat intelligence.

12. Check Point Software: Offers cloud security services such as firewalls, intrusion detection and prevention, and threat intelligence.

13. Trend Micro: Provides cloud security services such as data protection, threat detection, and compliance.

14. F5 Networks: Offers cloud security services such as web application firewall, bot management, and DDoS protection.

15. Zscaler: Provides cloud security services such as web security, DNS security, and cloud firewall.

16. Cloudflare: Offers cloud security services such as DDoS protection, web application firewall, and bot management.

17. Sophos: Provides cloud security services such as endpoint protection, email security, and web security.

18. Rapid7: Offers cloud security services such as vulnerability management, threat detection, and incident response.

19. Tenable: Provides cloud security services such as vulnerability management, threat detection, and compliance.

20. Alert Logic: Offers cloud security services such as intrusion detection and prevention, log management, and compliance.

21. Qualys: Provides cloud security services such as vulnerability management, threat detection, and compliance.

22. Carbon Black: Offers cloud security services such as endpoint protection, threat detection, and incident response.

23. Netskope: Provides cloud security services such as data loss prevention, web security, and cloud access security broker.

24. Bitdefender: Offers cloud security services such as endpoint protection, email security, and cloud security.

25. Barracuda Networks: Provides cloud security services such as email security, web security, and cloud security.

26. CipherCloud: Offers cloud security services such as data protection, threat detection, and compliance.

27. FireEye: Provides cloud security services such as threat intelligence, incident response, and forensics.

28. Imperva: Offers cloud security services such as web application firewall, bot management, and DDoS protection.

29. Qualys: Provides cloud security services such as vulnerability management, threat detection, and compliance.

30. Skyhigh Networks: Offers cloud security services such as cloud access security broker, data protection, and threat detection.

Overall, these cloud security companies provide a range of cloud security services, including identity and access management, data protection, threat detection, and compliance.

Top Live Broadcast Providers, Overview: CP Communications, NEP, Broadcast Solutions, Gearhouse Broadcast, & Gravity Media

There are Many Live Broadcast Event Companies out there, all with their own range of services.  Following is a short overview of some of them.  Feel Free to chime in with others…..

CP Communications is an audiovisual and live event production company that provides services for sports and entertainment events. They specialize in live event production, audio and video equipment rental, and staging and lighting design. The company offers a range of services, including:

1. Live event production – live event production services for sports, music, and entertainment events. This includes production planning, camera coverage, audio and video mixing, and on-site technical support.

2. Audio and video equipment rental -offers a range of audio and video equipment rental services, including cameras, microphones, speakers, and projectors. They also provide on-site technical support for equipment setup and operation.

3. Staging and lighting design – staging and lighting design services for live events, including custom stage design, lighting installation, and video projection mapping.

NEP Group is a leading provider of production services, engineering solutions, and media management for live sports and entertainment events worldwide. NEP Group provides a wide range of services, including:

1. Live event production – production services for sports, music, and entertainment events. This includes production planning, camera coverage, audio and video mixing, and on-site technical support.

2. Remote production – remote production services for sports events, allowing broadcasters to produce live events from a centralized location. This includes remote camera control, audio and video mixing, and on-site technical support.

3. Media management – media management services, including content storage, archiving, and distribution. This includes video editing, metadata tagging, and asset management.

4. Technical support – technical support services for audiovisual equipment and systems, including equipment rental, maintenance, and repair.

Broadcast Solutions is a global provider of production services and engineering solutions for sports, music, and entertainment events. The company offers a range of services, including live event production, remote production, and media management.

Gearhouse Broadcast is a global provider of production services and engineering solutions for sports, music, and entertainment events. The company offers a range of services, including live event production, remote production, and equipment rental.

Gravity Media is a global provider of production services and engineering solutions for sports, music, and entertainment events. The company offers a range of services, including live event production, remote production, and equipment rental. Gravity Media also provides specialized solutions for specific industries, such as esports and motorsports.

The differences between the above competitors include their range of services, geographic coverage, and industry specialization. It is recommended to evaluate the features, capabilities, and pricing of each provider before making a decision.

Wiki Collab

Wiki collaboration refers to a collaborative process of creating and editing content on a wiki platform. A wiki is a website or online platform that allows users to create and edit content collaboratively. Wiki collaboration can be used in a variety of contexts, including education, research, business, and community building.

Some of the benefits of wiki collaboration include:

1. Collaboration – Wikis promote collaboration among users by allowing them to work together to create and edit content.

2. Easy accessibility – Wikis can be accessed from anywhere with an internet connection, making it easy for users to contribute and access content.

3. Version control – Wikis typically offer version control, which allows users to track changes and revisions to the content.

4. Transparency – Wikis are transparent, meaning that all changes made to the content are visible to all users. This promotes accountability and encourages users to contribute responsibly.

5. Knowledge sharing – Wikis can be used to share knowledge and information with a community of users, which can be beneficial for education, research, and business purposes.

To collaborate on a wiki platform, users typically create an account and log in to access the content. They can then create and edit pages, add images and videos, and collaborate with other users. Some wiki platforms offer features such as discussion forums, chat rooms, and task management tools to help users collaborate more effectively.

There are various wiki platforms available, including:

1. Wikipedia – The world’s largest and most popular wiki platform, Wikipedia is a free encyclopedia that anyone can edit.

2. MediaWiki – An open-source wiki platform that powers Wikipedia and many other wikis.

3. Confluence – A wiki platform designed for business and team collaboration, Confluence offers features such as task management, calendars, and chat rooms.

4. Fandom – A wiki platform for fan communities, Fandom allows users to create and edit pages related to their favorite TV shows, movies, and other interests.

5. DokuWiki – An open-source wiki platform that is easy to use and highly customizable.

Overall, wiki collaboration can be a powerful tool for promoting collaboration, knowledge sharing, and community building. By allowing users to work together to create and edit content, wikis can facilitate the sharing of information and ideas across a wide range of contexts.

Short Tutorial: SMB

SMB stands for Server Message Block, which is a protocol for sharing files, printers, and other resources on a network. In Mac Finder, SMB is used to connect to Windows file servers or other network-attached storage devices that use the SMB protocol for sharing files.

When you connect to an SMB server using Mac Finder, you can access files and folders on the server just like you would on your local computer. You can browse the server’s file system, open files, copy files to or from the server, and perform other file management tasks. 

To connect to an SMB server using Mac Finder, you will need to know the server’s name or IP address, as well as a valid username and password with permissions to access the shared files or folders.

Practice this at least 3 times – get your clicks & Muscle Memory In!

👍 Like, Follow, and subscribe to this article blog – it’s free!

Turn Yourself Into a Resource (not a Commodity) that Companies Need!

Turn yourself into a resource that companies need!

1. Identify Your Unique Skill Set: First, you need to recognize and understand your unique skill set. Reflect on your strengths and weaknesses and consider how they might be valuable to a company.

– For instance, if you are interested in the broadcast industry, you may have skills such as live event production, video editing, scriptwriting, or on-air presenting. Identify which of these skills you excel at and enjoy doing the most.

2. Research the Market: Research the target market and identify the skills or resources that companies are looking for. This will help you tailor your skills and promote them in a way that meets company needs.

– Research the broadcast industry and identify the skills or resources that companies are looking for. For example, many broadcast companies seek individuals who are skilled in live production, video editing, and social media management.

3. Focus on Value Proposition: Craft a strong value proposition that highlights the benefits of your skills, knowledge, or experience. Explain how you can add value and solve problems for the company by using your skills.

– Craft a compelling value proposition that highlights the benefits of your skills. For instance, you could say something like: “I’m an experienced live event producer with a passion for creating engaging, high-quality content that connects with audiences. With my skills and experience, I can help your broadcasting company create engaging programming and reach a wider audience.”

4. Develop a Professional Brand: Build a professional brand that conveys your skills, professional approach, and your unique value proposition. Use social media, online portfolios, cover letters, and resumes to showcase your brand.

– Build a professional brand that conveys your skills and value proposition. Create an online portfolio that showcases your work, and use social media to share your expertise and connect with others in the broadcast industry.

5. Network: Build relationships and connect with people in your target market. Attend industry events, join professional organizations, and engage with companies and their employees through social media. Establishing relationships with people can help you learn about new opportunities and make you a valuable resource in the eyes of companies.

– Build relationships and connect with people in the broadcast industry. Attend industry events, join professional organizations, and engage with others in the industry through social media. This can help you learn about new opportunities and make valuable connections.

6. Demonstrate Credibility: Establish credibility by sharing your expertise through articles, presentations, or blogs. Share your knowledge, insights, and experiences related to your area of expertise, both online and offline. This will show companies that you are a credible expert and a valuable resource.

– Establish your credibility by sharing your expertise through articles, presentations, or blogs. For example, create a YouTube channel where you share live event production tips or write articles on the latest trends in video editing. This will show companies that you are knowledgeable and passionate about your craft.

7.  Be Consistent.  

You can set yourself apart in the broadcast industry, or any Industry really, and become a valuable resource that companies are eager to work with.

Overview: Riedel’s Line of Products

Today I’m going to give an overview of Riedel Communications.  I do not work for them, nor have I been paid by them for this article.

Riedel Communications is a company that provides innovative solutions for the broadcast, event, and AV industries. Riedel’s line of products includes a range of solutions for streaming and connecting disparate systems, including:

1. MediorNet – A real-time network for video, audio, and data signals. This solution enables the transport and processing of signals over fiber-optic, coaxial, or CatX cables. MediorNet can be used for point-to-point connections, as well as complex network topologies.

2. Artist – A digital matrix intercom system that enables communication between different locations and production teams. The Artist system can be used for traditional intercom applications, as well as for signal routing and distribution in broadcast and live event productions.

3. Bolero – A wireless intercom system that provides high-quality audio and reliable connectivity. Bolero allows for up to 10 beltpacks to be connected to a single antenna, providing coverage over large areas.

4. SmartPanel – A user-friendly intercom panel that can be used with the Artist and Bolero systems. SmartPanel features a touchscreen interface and can be customized to meet the needs of different production teams.

5. MicroN – A compact signal router for video and audio signals. MicroN can be used for point-to-point connections, as well as for routing signals in broadcast and event productions.

6. STX-200 – A solution for converting SDI signals to IP signals. STX-200 enables the integration of traditional broadcast workflows with IP-based workflows.

Riedel’s products are designed to provide flexibility, scalability, and reliability for streaming and connecting disparate systems. The company’s solutions are used in a range of applications, including broadcast, live events, sports, and corporate AV. Some of the features and specs of Riedel’s products include:

– High-quality audio and video signals
– Reliable connectivity over long distances
– Scalability for small and large productions
– User-friendly interfaces for easy operation
– Customizable configurations to meet specific needs
– Support for a range of protocols and standards, including SMPTE, Dante, and AES67

Overall, Riedel’s line of products provides innovative solutions for streaming and connecting disparate systems. The company’s products are designed to meet the needs of different production teams and can be customized to meet specific requirements.

Riedel’s programmable SFPs (Small Form-Factor Pluggable) are part of the MediorNet line of products. SFPs are modular components that can be inserted into MediorNet frames and other devices to enable the transport of video, audio, and data signals over fiber-optic, coaxial, or CatX cables.

Riedel’s programmable SFPs are designed to provide flexibility and customization for different applications. The SFPs can be programmed with different signal types and protocols, including 3G/HD/SD-SDI, MADI, AES, and Ethernet. This allows users to configure their MediorNet systems to meet specific requirements.

Some of the features and specs of Riedel’s programmable SFPs include:

– Support for a range of signal types and protocols
– Programmable with Riedel’s MediorWorks software or third-party software
– Hot-swappable for easy configuration and maintenance
– Automatic signal detection and configuration
– Low power consumption and compact size

Riedel’s programmable SFPs are used in a range of applications, including broadcast, live events, sports, and corporate AV. By enabling the transport of different signal types over a single network, these SFPs provide a flexible and cost-effective solution for video, audio, and data transport.